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Nonchaotic attractors with highly fluctuating finite-time Lyapunov exponents
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The implications of large fluctuations of finite-time Lyapunov exponents are discussed for nonchaotic
systems. We show that for a nonchaotic system driven by quasiperiodic force, if its finite-time Lyapunov
exponents periodically become positive, the resulting attractor can be strange but nonchaotic. With long
enough expanding time intervals, a nearly periodic force can also lead to strange nonchaotic attractors. For the
case of a periodic force, a special typical periodic attractor that is sensitive to micronoise is obtained. With the
different finite computing precisions, different pseudoperiodic orbits can be obtained.
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Strange nonchaotic attractors are attractors that are geapplicable to the systems in which behavior depends on a
metrically complicated, but typical trajectories on these at-control parametec such that they have a chaotic attractor
tractors exhibit no sensitive dependence on initial conditiongor one value ofc, sayc;, and a strange repeller together
asymptotically. Here the word “strange” refers to the geo-with a periodic attractor for the other valueafc,. Here the
metric structure of the attractor: A strange attractor is arsystem with a strange repeller exhibits transient chaos. One
attractor that is neither a finite set of points nor piecewisemechanism was investigated by Heagy and Hamftédl,
differentiable. The word chaotic refers to the dynamics of thewho discovered that, in quasiperiodically driven maps, the
orbits on the attractor: A chaotic attractor is one for whichtransition from a two-frequency quasiperiodic attractor to a
typical orbits have a positive Lyapunov exponent. This im-strange nonchaotic attractor occurs and then a period-
plies that nearby orbits diverge exponentially from one an-doubled torus collides with its unstable parent torus. Near the
other with time and that the orbit depends sensitively on itxollision, the period-doubled torus becomes extremely
initial conditions. These attractors were described by Grewrinkled and develops into a fractal set at the collision, al-
bogi et al. in 1984[1]. though the Lyapunov exponent remains negative throughout

Following the initial study were several theoretical studiesthe collision process. Feudet al. [15] found that the colli-
pertaining to the existence and characterization of strangsion between a stable torus and an unstable one at a dense set
nonchaotic attractorf2—8]. A typical system considered in of points leads to a strange nonchaotic attractor. Yalcinkaya
most of these works is a nonlinear continuous or discretand Lai[16,17 show that for dynamical systems with an
time oscillator with a two- or three-incommensurate-invariant subspace in which there is a quasiperiodic torus the
frequencies forcing. Most of these studies have focused oloss of the transverse stability of the torus can lead to the
their characterization, either through spectral properties, gedirth of a strange nonchaotic attractor. A physical phenom-
metric dimension properties, local divergence of trajectoriesenon accompanying this route to strange nonchaotic attrac-
or their identification in a time series. Strange nonchaotidors is an extreme type of intermittency.
attractors can arise in physically relevant situations such as More recently, one of the important observations is that
quasiperiodically forced damped penduluf@band localiza-  typical trajectories on strong nonchaotic attractors are char-
tion of quantum particles in quasiperiodic potentifl€]. acterized by finite-time Lyapunov exponeni@ transient
These exotic attractors have been observed in physical exyapunov exponenjsthat fluctuate between positive and
perimentg11,12. negative values, although asymptotically the time-

A basic question that remains interesting is about the dyindependent Lyapunov exponent is negatjt8,19. Fur-
namical mechanisms responsible for the creation of stranggmermore, Lai points out thdi20] whether the asymptotic
nonchaotic attractors, i.e., what the possible routes to strangstractor of the system is strange nonchaotic or strange cha-
nonchaotic attractors are. Kapitanifk3] shows an artifi-  otic is determined by the relative weight of the contraction
cially controlling technique that allows us to generate aand expansion for infinitesimal vectors along a typical trajec-
strange nonchaotic trajectory by making small changes in theory on the attractor. When the average contraction domi-
parameters of the three-dimensional system. The method isates the average expansion, the attractor is strange noncha-

otic. The transition from strange nonchaotic to strange
chaotic attractor occurs when the average contraction and
* Author to whom correspondence should be addressed. Addresxpansion are balanced. A characteristic signature of this
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produce strange nonchaotic attractors. One of them is thareatly about its negative Lyapunov exponent, a pseudoperi-
there exists the dynamics of chaotic and periodic intermit-odic trajectory can be obtained. Here the term “pseudo”
tency. In other words, the finite-time Lyapunov exponents ofindicates that the uncertainty is not determined by the com-
the nonchaotic system should oscillate greatly about its negguting precision and has the order of the attractor size. The
tive Lyapunov exponent. As a result, one can periodicallylonger the time interval of the positive finite-time Lyapunov
obtain positive finite-time Lyapunov exponents. A systemeXponents, the higher the computing precision required to
driven by the sinusoidal force can produce this typical dy-@chieve the real periodic attractor. _
namics. This condition provides sensitive dynamics to the 1O Support our proposal, we present some numerical
noise in the system. The second condition is that there shougimulations on the sinusoidally driven logistic map. Consider
be a source to generate the necessary noise that leads thé logistic map driven by a sinusoidal force

orbit to run into different diverging orbits during various

expanding time intervals. A typical source is the quaisperi- X(t+1)=[x(t)+f] mod1,

odical force. Under these conditions, a strange geometric
structure can then be produced for the attractor. We show
that there is a finite region in the parameter space for which
the strange nonchaotic attractors exist. This method is quite
similar to that proposed by Kapitanid3]. However, dif-  There are two Lyapunov exponents for the map. One of them
ferently from it, the system is not switched between twolS always zero, while the other can simply be calculated from
states here and the periodic attractors are not required f§€ tangential space of the logistic map. In the paper we set
possess the strange repellers in order to exhibit transie@= 3.6, the amplitude of forcd=0.12, and letr be on the
chaos. To obtain the chaotic and periodic intermittent dy-order of 10°*2 Now set the frequencf/=0.005. In this case,
namics, an artificially controlling technique is used in Ref.an exactly periodic force is used. Its Lyapunov exponerst

[13]. In this paper a natural sinusoidal force is applied. In—0.031. As expected, a periodic attractor is obtained, which
contrast to the method in Reff16,17, the intermittency is shown in Fig. 1a). Its fractal dimensions are naturally
dynamics is an essential ingredient, rather than an accomp&gual to zero, as obtained in Fig. 2.

nying phenomenon, to create the strange nonchaotic attractor What will happen if we set the frequencl/ =0.005

in the present method. +10 %252 Its corresponding Lyapunov exponent is also

To construct a quasiperiodic force, in most of the works,—0.031. Thus, at the first glance, one may think that we can
the golden meari=(\5—1)/2 is used as a typical forcing obtain a periodic attractor that is very similar to that shown
frequency. In contrast, we call the quasiperiodic force within Fig. 1(a). In contrast to sin(2ft), the nearly periodic force
frequency f'=n+ 10—12ﬁ (heren is a big enough real sin(2#f't) always results in only a slightly different value,
number, equal to 0.005he nearly periodic one. We will which is on the order of 10'2 This microdifference can be
show that if the finite-time Lyapunov exponents becomeignored for the periodic attractors due to its negative
positive with a long enough time interval, even with the Lyapunov exponent. However, the attractor is shown in Fig.
nearly periodic force, one can also obtain a strange noncha{(b). Surprisingly, the simulation result implies that a strange
otic attractor. attractor is obtained here. Its capacity dimens@p and

If the noise source is absent, one can obtain a perioditformation dimensiorD, can be calculated along the line
attractor. However, in contrast to the normal ones, the periusing the box-counting algorithm. If we ignore the microd-
odic attractor obtained here is special; it consists of a piec#ferences between variougt), only 200 discrete values of
of a stable period with another piece of a unstable period. IK(t) are obtained. Due to the discreteaxis, we can simply
the unstable piece is long enough, it is sensitive to the micount the number of one-dimensional boxes for a fixed
cronoise. The effects of noise on chaos are discussed exteWith this simplification, one can easily estimate if the attrac-
sively. Here we show that some special periodic attractor$or is strange. As shown in Fig. 2, the capacity dimension
also possess this property. As a result, if such systems afec=0.97 and information dimensioD,=0.92(*=0.02) are
disturbed by micronoise, strange nonchaotic attractors cafitted out withx=0.3. This clearly indicates that the attractor
also be achieved. possesses the strange geometric structure.

In Refs.[21-29 the effects of finite computing precision Comparing Fig. (8 with Fig. 1(b), the difference be-
leading to pseudotrajectories in chaotic systems are investiween the two driving forces is only on the order of 18 It
gated. It is shown that in the absence of a hyperbolic strucis this tiny difference that determines whether a strange at-
ture, because the trajectories are globally sensitive to smaitactor or a periodic attractor is achieved. This implies that
errors, trajectories of a chaotic system will fail to have longthe nonchaotic system is also sensitive to micronoise caused
shadowing trajectorief24]. The smaller the fluctuation of by a nearly periodic force.
the finite-time Lyapunov exponents about zero, the shorter From Fig. 1b) one can clearly see that the trajectory of
the shadowing distance and tirf5]. the attractor possesses the dynamics of periodic and chaotic

The effect of the truncation error on the periodic attractorintermittency. When [x(t)]Jmod 1<0.2 or [x(t)]mod 1
is seldom discussed. We often think that the computing pre>0.7, the trajectory runs into a contracting region, otherwise
cision means only the uncertainty of the periodic trajectoryit runs into an expanding region. This observation indicates
higher computing precision, lower uncertainty. In fact, thethat, although the nonchaotic attractor has a negative
truncation error can be ignored for a wholly stable attractorLyapunov exponent and does not yield long-term exponen-
However, in the paper we will show that for the periodic tially diverging solutions, its short-term dynamics can be
system, if its finite-time Lyapunov exponents fluctuatequite complex. The short-term dynamics can be exactly de-

y(t+1)=ay(t)[1-y(t)]+AsinN2mx(t)]. ()
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FIG. 2. Logarithm of box-counting numbers tr{r) and infor-
0.6 mation entropyH (r) versus logarithmic scale In(d/. The data are
s ’ obtained from 5< 10° points after the initial transient810* points
>~ 04 have been cut with the initial condition equal to 0.2.
ozl the trajectory visits the contracting region with a high fre-
) quency and then in the next finite-time interval it visits the
0.0 expanding region with high frequency. After that, it will go
1'0 back to the contracting region again and the whole process
) continues. If the time intervals of chaotic divergence are long
08l enough, when a micronoise is always added to the system, it
' will be enlarged by the dynamics during every interval with
06 positive finite-time Lyapunov exponents. Because of the
> positive finite-time Lyapunov exponents, the created orbit
0.4 possesses the characteristics of chaos. As a result, a strange
) geometric structure is achieved.
02l The time 7 Lyapunov exponenta (t) versus timet are
) given in Fig. 3 for Eg.(1) with r=5 and f'=0.005
+10 2/5. If f=0.005, a similar but periodic wave form is

O.%‘

obtained. It shows that the time Lyapunov exponents are
x(®) modulated by the sinusoidal force and have a large oscillat-
ing dynamics about its Lyapunov exponent. The modulating
FIG. 1. Attractors of(@) Eq. (1) with f=0.005,(b) Eq. (1) with ~ frequency equals the forcing frequency. When the time
f=0.005+10"%/5, and(c) Eq. (5) with f=0.005. The 20000 Lyapunov exponents are negative, the orbit is driven into the
pixels are dotted withA=0.12. contracting region with high probability. On the other hand,
when the timer Lyapunov exponents are positive, the tra-
scribed by the finite-time Lyapunov expondri8—20. In  jectory will be found in the expanding region with high prob-
particular, the timer Lyapunov exponenh ,(ty), which is  ability. Within the long enough expanding time intervals,
defined as any micronoise will be enlarged exponentially and then lead

to a macroeffect on the attractor.
to+7

1 df

MU =22 ) R m Jos
quantifies the expanding or contracting exponent that the tra-~ 0.0 - — 00 2
jectory experiences in the timeinterval from timet,. For a <,
simple nonchaotic system with any finite the time = 05 105
Lyapunov exponents are also negative or with a small fluc- 10 |10
tuation about its Lyapunov exponent. As a result, any differ-
ence among the trajectories approaches zero gradually and i .15 115
wholly stable periodic attractor is achieved. The micronoise
actually has little effect on the dynamics. 2.0 1-2.0

Now suppose that the finite-time Lyapunov exponents of 10000 10500 11000 11500 12000

the nonchaotic system fluctuate about its Lyapunov exponent
greatly, so great that the positive finite-time Lyapunov expo-

nents can be achieved periodically. The dynamics then pos- FIG. 3. Plot of time versus time Lyapunov exponents for Eq.
sesses the characteristics of intermittency between periodi¢) with =5 and timet from 10 000 to 13 000. The dotted line
and chaotic states. In particular, within a finite-time interval,shows the nearly periodic driving force.

t
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achieved and the more nearly periodic force that can be used
051 to lead strange nonchaotic attractors. In short, the strange
0.0 {rﬂnmﬂﬂ nonchaotic attractor is a typical phenomenon in the system,
r' l‘ [ ! as confirmed by our computer simulations.
0.5F Now that we understand the dynamical origin of the
. strange nonchaotic attractor, we can construct examples in
< -1or which this happens. One example is to 5et0.002x \/6 for
sk Eqg. (1). Another example is
20} y(t+1)=ay(t)[1—y(t)]+A sin(27ft), )
25 s 000 005 000 005 040 015 with f=0.005 andw on the order of 10*2 This is also a
F nearly periodic force, e.g., sinf~10 12 Set
FIG. 4. Lyapunov exponents versus constant driving forde x(t)=[ft] mod 1.

from —1.55 to 1.55 for Eq(3).

The attractor obtained in they phase space is very similar

However, as shown in Fig.(d), because of the large fluc- to that in Fig. 1b).
tuation of the finite-time Lyapunov exponents, the strange In the following we will show that the periodic attractor
nonchaotic attractor will not occur. During each contractingobtained from Eq.(1) driven by periodic force possesses
time interval, various orbits are contracted to the same pericomplex dynamical behaviors. In contrast to the normal pe-
odic orbit. Then, if starting with the same initial conditions, ariodic attractors, it is not a wholly stable one. It consists of a
single orbit will always be obtained during various expand-piece of a stable period with another piece of an unstable
ing time intervals. This is in the case of periodic force. Toperiod that possesses positive finite-time Lyapunov expo-
obtain a strange structure, there should be a noise source f@nts. If the time interval in which the finite-time Lyapunov
drive the same contracting orbits to run into different orbitsexponents of the system are positive is long enough, its dy-
during different expanding time intervals. In fact, the quasi-namics is more like chaos. Thus some behaviors encountered
periodic force can provide such noise. Because of the smaih chaotic systems can be found in such periodic systems.
driving frequency used here, a long diverging time interval The notable result is that the unstable periodic piece will
can be obtained. As a result, even with the nearly periodighow strong sensitivity to micronoise, which in turn leads to
force that is only on the order of 1¢? the micronoise can macroeffects in the chaotic divergent intervals. As the added
be enlarged exponentially during various expanding time inmicronoise can produce various diverging orbits during dif-
tervals and hence lead to different chaotically bursting orbit§erent expanding time intervals, another route to achieve the
to construct a strange structure for the attractor. strange nonchaotic attractor can be developed. It is produced
Since f<1, the driving force of the system can be ap-with a periodic force disturbed by micronoise,

proximated by a constant driving forde for a short time
interval. So the timer Lyapunov exponenk ,(to) at timet, X(t+1)=[x(t)+f] mod 1,
can be approximated by the Lyapunov exponesatof

y(t+1)=ay()[1-y(t)]+F, ©)

y(t+1)=ay(t)[1-y(t)]+A sif27x(t) ]+ Snoise- (5)

Suppose that the amplitude of the micronoise is on the order
with constant~ equal toA sin(2xfty). For this kind of sys-  of 10 2 The corresponding attractor is shown in Figc)1
tem, finite-time Lyapunov exponents have a small fluctuatiorstatistically, it is similar to the strange nonchaotic attractor
about its Lyapunov exponent and so we can use this approxgaused by Eq(1). Its fractal dimensions are calculated from
mation. In Fig 4 a plot of the Lyapunov exponentg versus  Fig. 2 asD-=0.97 andD,=0.93 (=0.02) with x=0.3,
constant driving forceF from —0.155 to 0.155 is given. which is almost the same as the results of Fidp).1
With F=-0.12, Ag=-1.721, while withF=0.12, A Now if we construct such an experimental system, unlike
=0.495, approaching the extreme values of finite-timeusual periodic systems, the system'’s predictability also oscil-
Lyapunov exponents shown in Fig. 3. We can observe frontates with time because experimental noise cannot be
Fig. 4 that positive Lyapunov exponents are always achievedvoided. In particular, one cannot predict the orbit during its
whenF>0.118, except in a narrow region near=0.1392. chaotic divergent intervals. Another consequence is that it
On the other hand, negative values are obtained whegeems that we cannot distinguish syst@mfrom system(5)
F<—0.011. This means that if the amplitude of the drivingin experiment.
force in Eq.(1) is in the regionA>0.118, the chaotic and As truncation error is a special kind of noise, one can
periodic intermittency dynamics can always be found. Simu-easily deduce from the above analysis that the truncation
lation results show that when 0.1&&<0.15 with f error also causes some basic problems in such systems. Be-
=0.005, the Lyapunov exponents of the attractors are altause of the absence of a noise source, the periodic attractor
negative. This implies that there exists a finite region in theis also obtained using the float precision computation. How-
parameter spac@ that contains strange nonchaotic attrac-ever, this periodic orbiy’ (t) is different from the orbit(t)
tors. In addition, one can also always find such attractors imbtained with double precision computation. A plot of time
the region off approaching zero. The smaller the driving versus the differenceAy(t)=y’(t)—y(t) within a driving
frequency, the longer the expanding time interval that can bgeriod is given in Fig. 5. With the same precision of compu-
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The implications of large fluctuations of finite-time
Lyapunov exponents are discussed for nonchaotic systems.
For this purpose, the logistic map driven by a sinusoidal
force is considered. Our research indicates that for systems
with finite-time Lyapunov exponents fluctuating greatly
00 ‘ about their Lyapunov exponent, i.e., with the dynamics of
chaotic and periodic intermittency, the behaviors of the
chaos and period can be achieved in turn. As a result, the
attractor corresponds to the coexistence of the pieces of
stable and unstable structures. The unstable structure is
strange if the system is driven by a quasiperiodic force or by
a periodic force disturbed by noise. The lower the driving

05|

Ay(®

-0.5 |

-1.0 L ! .
200000 200050 200100 200150 200200

z frequency, the more the nearly periodic force can be used.
FIG. 5. Plot of time versus the differencay/(t) between the For the periodic forcing, a special typical periodic attractor
orbit obtained with 10° truncation error and that with T8, can be obtained that is sensitive to the micronoise. With the

different finite computing precisions, different pseudoperi-
tation, the absence of noise source results because the chari§iic orbits can be obtained.
in truncation errors is periodic with the same frequency as To construct such a system it is important to find a suit-
the driving force. Different finite precisions lead to different able equation. The equation should be cha@ticperiodig
orbits of periodic truncation errors, which in turn cause dif-when it is disturbed by a constant for€e (or —F). The
ferent pseudoperiodic attractors. In this case, the uncertaingecond condition is that the equation disturbed by a sinu-
of the periodic trajectory is not proportional to the truncationsoidal force with amplitude® is still nonchaotic. Here the
error. The error between the computing trajectory and theorcing frequency should be small enough. In this case, when
real trajectory can be of the order of the attractor size. So, fthe sinusoidal force approachésit can be approximated by
the periodic system, if its finite-time Lyapunov exponentSihe constant force& for a long enough time. As a result,

fluctuate greatly about its negative Lyapunov exponent, &qsitive finite-time Lyapunov exponents can be periodically
pseudoperiodic trajectory can often be obtained. With much -hiayed.

higher computing precision, the noise caused by the trunca-
tion error can be ignored. In this case, the real periodic at-

tractor is obtained. The smaller the driving frequericyhe The authors would like to thank the City University of
higher the computing precision needed to achieve the realong Kong for providing the Strategic Research Grant for
periodic attractor. this work.
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