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Nonchaotic attractors with highly fluctuating finite-time Lyapunov exponents
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The implications of large fluctuations of finite-time Lyapunov exponents are discussed for nonchaotic
systems. We show that for a nonchaotic system driven by quasiperiodic force, if its finite-time Lyapunov
exponents periodically become positive, the resulting attractor can be strange but nonchaotic. With long
enough expanding time intervals, a nearly periodic force can also lead to strange nonchaotic attractors. For the
case of a periodic force, a special typical periodic attractor that is sensitive to micronoise is obtained. With the
different finite computing precisions, different pseudoperiodic orbits can be obtained.
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Strange nonchaotic attractors are attractors that are
metrically complicated, but typical trajectories on these
tractors exhibit no sensitive dependence on initial conditi
asymptotically. Here the word ‘‘strange’’ refers to the ge
metric structure of the attractor: A strange attractor is
attractor that is neither a finite set of points nor piecew
differentiable. The word chaotic refers to the dynamics of
orbits on the attractor: A chaotic attractor is one for whi
typical orbits have a positive Lyapunov exponent. This i
plies that nearby orbits diverge exponentially from one
other with time and that the orbit depends sensitively on
initial conditions. These attractors were described by G
bogi et al. in 1984 @1#.

Following the initial study were several theoretical stud
pertaining to the existence and characterization of stra
nonchaotic attractors@2–8#. A typical system considered in
most of these works is a nonlinear continuous or discr
time oscillator with a two- or three-incommensurat
frequencies forcing. Most of these studies have focused
their characterization, either through spectral properties, g
metric dimension properties, local divergence of trajector
or their identification in a time series. Strange nonchao
attractors can arise in physically relevant situations such
quasiperiodically forced damped pendulums@9# and localiza-
tion of quantum particles in quasiperiodic potentials@10#.
These exotic attractors have been observed in physical
periments@11,12#.

A basic question that remains interesting is about the
namical mechanisms responsible for the creation of stra
nonchaotic attractors, i.e., what the possible routes to stra
nonchaotic attractors are. Kapitaniak@13# shows an artifi-
cially controlling technique that allows us to generate
strange nonchaotic trajectory by making small changes in
parameters of the three-dimensional system. The metho
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applicable to the systems in which behavior depends o
control parameterc such that they have a chaotic attract
for one value ofc, say c1, and a strange repeller togeth
with a periodic attractor for the other value ofc, c2. Here the
system with a strange repeller exhibits transient chaos.
mechanism was investigated by Heagy and Hammel@14#,
who discovered that, in quasiperiodically driven maps,
transition from a two-frequency quasiperiodic attractor to
strange nonchaotic attractor occurs and then a per
doubled torus collides with its unstable parent torus. Near
collision, the period-doubled torus becomes extrem
wrinkled and develops into a fractal set at the collision,
though the Lyapunov exponent remains negative through
the collision process. Feudelet al. @15# found that the colli-
sion between a stable torus and an unstable one at a den
of points leads to a strange nonchaotic attractor. Yalcink
and Lai @16,17# show that for dynamical systems with a
invariant subspace in which there is a quasiperiodic torus
loss of the transverse stability of the torus can lead to
birth of a strange nonchaotic attractor. A physical pheno
enon accompanying this route to strange nonchaotic att
tors is an extreme type of intermittency.

More recently, one of the important observations is th
typical trajectories on strong nonchaotic attractors are ch
acterized by finite-time Lyapunov exponents~or transient
Lyapunov exponents! that fluctuate between positive an
negative values, although asymptotically the tim
independent Lyapunov exponent is negative@18,19#. Fur-
thermore, Lai points out that@20# whether the asymptotic
attractor of the system is strange nonchaotic or strange
otic is determined by the relative weight of the contracti
and expansion for infinitesimal vectors along a typical traj
tory on the attractor. When the average contraction do
nates the average expansion, the attractor is strange non
otic. The transition from strange nonchaotic to stran
chaotic attractor occurs when the average contraction
expansion are balanced. A characteristic signature of
route to chaos is that the Lyapunov exponent passes thro
zero linearly.

Based on this research, a different route to create stra
nonchaotic attractors is presented in this paper. We show
if the systems possess the following two conditions, they
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57 5333NONCHAOTIC ATTRACTORS WITH HIGHLY . . .
produce strange nonchaotic attractors. One of them is
there exists the dynamics of chaotic and periodic interm
tency. In other words, the finite-time Lyapunov exponents
the nonchaotic system should oscillate greatly about its ne
tive Lyapunov exponent. As a result, one can periodica
obtain positive finite-time Lyapunov exponents. A syste
driven by the sinusoidal force can produce this typical d
namics. This condition provides sensitive dynamics to
noise in the system. The second condition is that there sh
be a source to generate the necessary noise that lead
orbit to run into different diverging orbits during variou
expanding time intervals. A typical source is the quaispe
odical force. Under these conditions, a strange geome
structure can then be produced for the attractor. We sh
that there is a finite region in the parameter space for wh
the strange nonchaotic attractors exist. This method is q
similar to that proposed by Kapitaniak@13#. However, dif-
ferently from it, the system is not switched between tw
states here and the periodic attractors are not require
possess the strange repellers in order to exhibit trans
chaos. To obtain the chaotic and periodic intermittent
namics, an artificially controlling technique is used in R
@13#. In this paper a natural sinusoidal force is applied.
contrast to the method in Refs.@16,17#, the intermittency
dynamics is an essential ingredient, rather than an accom
nying phenomenon, to create the strange nonchaotic attra
in the present method.

To construct a quasiperiodic force, in most of the wor
the golden meanf 5(A521)/2 is used as a typical forcin
frequency. In contrast, we call the quasiperiodic force w
frequency f 85n110212A5 ~here n is a big enough rea
number, equal to 0.005! the nearly periodic one. We wil
show that if the finite-time Lyapunov exponents beco
positive with a long enough time interval, even with th
nearly periodic force, one can also obtain a strange non
otic attractor.

If the noise source is absent, one can obtain a perio
attractor. However, in contrast to the normal ones, the p
odic attractor obtained here is special; it consists of a pi
of a stable period with another piece of a unstable period
the unstable piece is long enough, it is sensitive to the
cronoise. The effects of noise on chaos are discussed e
sively. Here we show that some special periodic attrac
also possess this property. As a result, if such systems
disturbed by micronoise, strange nonchaotic attractors
also be achieved.

In Refs.@21–25# the effects of finite computing precisio
leading to pseudotrajectories in chaotic systems are inv
gated. It is shown that in the absence of a hyperbolic str
ture, because the trajectories are globally sensitive to s
errors, trajectories of a chaotic system will fail to have lo
shadowing trajectories@24#. The smaller the fluctuation o
the finite-time Lyapunov exponents about zero, the sho
the shadowing distance and time@25#.

The effect of the truncation error on the periodic attrac
is seldom discussed. We often think that the computing p
cision means only the uncertainty of the periodic trajecto
higher computing precision, lower uncertainty. In fact, t
truncation error can be ignored for a wholly stable attrac
However, in the paper we will show that for the period
system, if its finite-time Lyapunov exponents fluctua
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greatly about its negative Lyapunov exponent, a pseudop
odic trajectory can be obtained. Here the term ‘‘pseud
indicates that the uncertainty is not determined by the co
puting precision and has the order of the attractor size.
longer the time interval of the positive finite-time Lyapuno
exponents, the higher the computing precision required
achieve the real periodic attractor.

To support our proposal, we present some numer
simulations on the sinusoidally driven logistic map. Consid
the logistic map driven by a sinusoidal force

x~ t11!5@x~ t !1 f # mod 1,

y~ t11!5ay~ t !@12y~ t !#1Asin@2px~ t !#. ~1!

There are two Lyapunov exponents for the map. One of th
is always zero, while the other can simply be calculated fr
the tangential space of the logistic map. In the paper we
a53.6, the amplitude of forceA50.12, and letp be on the
order of 10212. Now set the frequencyf 50.005. In this case,
an exactly periodic force is used. Its Lyapunov exponentl is
20.031. As expected, a periodic attractor is obtained, wh
is shown in Fig. 1~a!. Its fractal dimensions are naturall
equal to zero, as obtained in Fig. 2.

What will happen if we set the frequencyf 850.005
110212A5? Its corresponding Lyapunov exponent is a
20.031. Thus, at the first glance, one may think that we
obtain a periodic attractor that is very similar to that sho
in Fig. 1~a!. In contrast to sin(2pft), the nearly periodic force
sin(2pf8t) always results in only a slightly different value
which is on the order of 10212. This microdifference can be
ignored for the periodic attractors due to its negat
Lyapunov exponent. However, the attractor is shown in F
1~b!. Surprisingly, the simulation result implies that a stran
attractor is obtained here. Its capacity dimensionDC and
information dimensionDI can be calculated along the lin
using the box-counting algorithm. If we ignore the micro
ifferences between variousx(t), only 200 discrete values o
x(t) are obtained. Due to the discretex axis, we can simply
count the number of one-dimensional boxes for a fixedx.
With this simplification, one can easily estimate if the attra
tor is strange. As shown in Fig. 2, the capacity dimens
DC50.97 and information dimensionDI50.92(60.02) are
fitted out withx50.3. This clearly indicates that the attract
possesses the strange geometric structure.

Comparing Fig. 1~a! with Fig. 1~b!, the difference be-
tween the two driving forces is only on the order of 10212. It
is this tiny difference that determines whether a strange
tractor or a periodic attractor is achieved. This implies th
the nonchaotic system is also sensitive to micronoise cau
by a nearly periodic force.

From Fig. 1~b! one can clearly see that the trajectory
the attractor possesses the dynamics of periodic and ch
intermittency. When @x(t)#mod 1,0.2 or @x(t)#mod 1
.0.7, the trajectory runs into a contracting region, otherw
it runs into an expanding region. This observation indica
that, although the nonchaotic attractor has a nega
Lyapunov exponent and does not yield long-term expon
tially diverging solutions, its short-term dynamics can
quite complex. The short-term dynamics can be exactly
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5334 57J. W. SHUAI AND K. W. WONG
scribed by the finite-time Lyapunov exponent@18–20#. In
particular, the timet Lyapunov exponentlt(t0), which is
defined as

lt~ t0!5
1

t (
t5t0

t01t

lnU d f

dx~ t !U, ~2!

quantifies the expanding or contracting exponent that the
jectory experiences in the timet interval from timet0. For a
simple nonchaotic system with any finitet, the time t
Lyapunov exponents are also negative or with a small fl
tuation about its Lyapunov exponent. As a result, any diff
ence among the trajectories approaches zero gradually a
wholly stable periodic attractor is achieved. The microno
actually has little effect on the dynamics.

Now suppose that the finite-time Lyapunov exponents
the nonchaotic system fluctuate about its Lyapunov expon
greatly, so great that the positive finite-time Lyapunov exp
nents can be achieved periodically. The dynamics then p
sesses the characteristics of intermittency between peri
and chaotic states. In particular, within a finite-time interv

FIG. 1. Attractors of~a! Eq. ~1! with f 50.005,~b! Eq. ~1! with
f 50.005110212A5, and ~c! Eq. ~5! with f 50.005. The 20 000
pixels are dotted withA50.12.
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the trajectory visits the contracting region with a high fr
quency and then in the next finite-time interval it visits t
expanding region with high frequency. After that, it will g
back to the contracting region again and the whole proc
continues. If the time intervals of chaotic divergence are lo
enough, when a micronoise is always added to the syste
will be enlarged by the dynamics during every interval w
positive finite-time Lyapunov exponents. Because of
positive finite-time Lyapunov exponents, the created or
possesses the characteristics of chaos. As a result, a st
geometric structure is achieved.

The timet Lyapunov exponentslt(t) versus timet are
given in Fig. 3 for Eq. ~1! with t55 and f 850.005
110212A5. If f 50.005, a similar but periodic wave form i
obtained. It shows that the timet Lyapunov exponents are
modulated by the sinusoidal force and have a large osci
ing dynamics about its Lyapunov exponent. The modulat
frequency equals the forcing frequency. When the timet
Lyapunov exponents are negative, the orbit is driven into
contracting region with high probability. On the other han
when the timet Lyapunov exponents are positive, the tr
jectory will be found in the expanding region with high pro
ability. Within the long enough expanding time interva
any micronoise will be enlarged exponentially and then le
to a macroeffect on the attractor.

FIG. 2. Logarithm of box-counting numbers lnn(r ) and infor-
mation entropyH(r ) versus logarithmic scale ln(1/r ). The data are
obtained from 53105 points after the initial transient 53104 points
have been cut with the initial condition equal to 0.2.

FIG. 3. Plot of time versus timet Lyapunov exponents for Eq
~1! with t55 and timet from 10 000 to 13 000. The dotted lin
shows the nearly periodic driving force.



-
g
ng
e
, a
d

To
ce
its
si

va
d

in
bit

p-

io
o

.

m
om
ve

he
ng

u

a
th
c

s
g
b

sed
nge
em,

he
s in

r

r
s

pe-
f a
ble
po-
v
dy-
ered
s.
ill
to

ded
if-
the
ced

rder

tor
m

ike
cil-
be
its
t it

an
tion
. Be-
ctor
w-

e

u-

57 5335NONCHAOTIC ATTRACTORS WITH HIGHLY . . .
However, as shown in Fig. 1~a!, because of the large fluc
tuation of the finite-time Lyapunov exponents, the stran
nonchaotic attractor will not occur. During each contracti
time interval, various orbits are contracted to the same p
odic orbit. Then, if starting with the same initial conditions
single orbit will always be obtained during various expan
ing time intervals. This is in the case of periodic force.
obtain a strange structure, there should be a noise sour
drive the same contracting orbits to run into different orb
during different expanding time intervals. In fact, the qua
periodic force can provide such noise. Because of the sm
driving frequency used here, a long diverging time inter
can be obtained. As a result, even with the nearly perio
force that is only on the order of 10212, the micronoise can
be enlarged exponentially during various expanding time
tervals and hence lead to different chaotically bursting or
to construct a strange structure for the attractor.

Since f !1, the driving force of the system can be a
proximated by a constant driving forceF for a short time
interval. So the timet Lyapunov exponentlt(t0) at time t0
can be approximated by the Lyapunov exponentlF of

y~ t11!5ay~ t !@12y~ t !#1F, ~3!

with constantF equal toA sin(2pft0). For this kind of sys-
tem, finite-time Lyapunov exponents have a small fluctuat
about its Lyapunov exponent and so we can use this appr
mation. In Fig. 4 a plot of the Lyapunov exponentslF versus
constant driving forceF from 20.155 to 0.155 is given
With F520.12, lF521.721, while withF50.12, lF
50.495, approaching the extreme values of finite-ti
Lyapunov exponents shown in Fig. 3. We can observe fr
Fig. 4 that positive Lyapunov exponents are always achie
whenF.0.118, except in a narrow region nearF50.1392.
On the other hand, negative values are obtained w
F,20.011. This means that if the amplitude of the drivi
force in Eq.~1! is in the regionA.0.118, the chaotic and
periodic intermittency dynamics can always be found. Sim
lation results show that when 0.118,A,0.15 with f
50.005, the Lyapunov exponents of the attractors are
negative. This implies that there exists a finite region in
parameter spaceA that contains strange nonchaotic attra
tors. In addition, one can also always find such attractor
the region of f approaching zero. The smaller the drivin
frequency, the longer the expanding time interval that can

FIG. 4. Lyapunov exponentsl versus constant driving forceF
from 21.55 to 1.55 for Eq.~3!.
e

ri-

-

to

-
all
l
ic

-
s

n
xi-

e

d

n

-

ll
e
-
in

e

achieved and the more nearly periodic force that can be u
to lead strange nonchaotic attractors. In short, the stra
nonchaotic attractor is a typical phenomenon in the syst
as confirmed by our computer simulations.

Now that we understand the dynamical origin of t
strange nonchaotic attractor, we can construct example
which this happens. One example is to setf 50.0023A6 for
Eq. ~1!. Another example is

y~ t11!5ay~ t !@12y~ t !#1A sin~2p f t !, ~4!

with f 50.005 andp on the order of 10212. This is also a
nearly periodic force, e.g., sin(2p)'10212. Set

x~ t !5@ f t# mod 1.

The attractor obtained in thex-y phase space is very simila
to that in Fig. 1~b!.

In the following we will show that the periodic attracto
obtained from Eq.~1! driven by periodic force possesse
complex dynamical behaviors. In contrast to the normal
riodic attractors, it is not a wholly stable one. It consists o
piece of a stable period with another piece of an unsta
period that possesses positive finite-time Lyapunov ex
nents. If the time interval in which the finite-time Lyapuno
exponents of the system are positive is long enough, its
namics is more like chaos. Thus some behaviors encount
in chaotic systems can be found in such periodic system

The notable result is that the unstable periodic piece w
show strong sensitivity to micronoise, which in turn leads
macroeffects in the chaotic divergent intervals. As the ad
micronoise can produce various diverging orbits during d
ferent expanding time intervals, another route to achieve
strange nonchaotic attractor can be developed. It is produ
with a periodic force disturbed by micronoise,

x~ t11!5@x~ t !1 f # mod 1,

y~ t11!5ay~ t !@12y~ t !#1A sin@2px~ t !#1dnoise. ~5!

Suppose that the amplitude of the micronoise is on the o
of 10212. The corresponding attractor is shown in Fig. 1~c!.
Statistically, it is similar to the strange nonchaotic attrac
caused by Eq.~1!. Its fractal dimensions are calculated fro
Fig. 2 as DC50.97 andDI50.93 (60.02) with x50.3,
which is almost the same as the results of Fig. 1~b!.

Now if we construct such an experimental system, unl
usual periodic systems, the system’s predictability also os
lates with time because experimental noise cannot
avoided. In particular, one cannot predict the orbit during
chaotic divergent intervals. Another consequence is tha
seems that we cannot distinguish system~1! from system~5!
in experiment.

As truncation error is a special kind of noise, one c
easily deduce from the above analysis that the trunca
error also causes some basic problems in such systems
cause of the absence of a noise source, the periodic attra
is also obtained using the float precision computation. Ho
ever, this periodic orbity8(t) is different from the orbity(t)
obtained with double precision computation. A plot of tim
versus the differencesDy(t)5y8(t)2y(t) within a driving
period is given in Fig. 5. With the same precision of comp
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5336 57J. W. SHUAI AND K. W. WONG
tation, the absence of noise source results because the ch
in truncation errors is periodic with the same frequency
the driving force. Different finite precisions lead to differe
orbits of periodic truncation errors, which in turn cause d
ferent pseudoperiodic attractors. In this case, the uncerta
of the periodic trajectory is not proportional to the truncati
error. The error between the computing trajectory and
real trajectory can be of the order of the attractor size. So,
the periodic system, if its finite-time Lyapunov exponen
fluctuate greatly about its negative Lyapunov exponen
pseudoperiodic trajectory can often be obtained. With m
higher computing precision, the noise caused by the trun
tion error can be ignored. In this case, the real periodic
tractor is obtained. The smaller the driving frequencyf , the
higher the computing precision needed to achieve the
periodic attractor.

FIG. 5. Plot of time versus the differencesDy(t) between the
orbit obtained with 1029 truncation error and that with 10218.
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The implications of large fluctuations of finite-tim
Lyapunov exponents are discussed for nonchaotic syste
For this purpose, the logistic map driven by a sinusoi
force is considered. Our research indicates that for syst
with finite-time Lyapunov exponents fluctuating great
about their Lyapunov exponent, i.e., with the dynamics
chaotic and periodic intermittency, the behaviors of t
chaos and period can be achieved in turn. As a result,
attractor corresponds to the coexistence of the pieces
stable and unstable structures. The unstable structur
strange if the system is driven by a quasiperiodic force or
a periodic force disturbed by noise. The lower the drivi
frequency, the more the nearly periodic force can be us
For the periodic forcing, a special typical periodic attrac
can be obtained that is sensitive to the micronoise. With
different finite computing precisions, different pseudope
odic orbits can be obtained.

To construct such a system it is important to find a su
able equation. The equation should be chaotic~or periodic!
when it is disturbed by a constant forceF ~or 2F). The
second condition is that the equation disturbed by a si
soidal force with amplitudeF is still nonchaotic. Here the
forcing frequency should be small enough. In this case, w
the sinusoidal force approachesF, it can be approximated by
the constant forceF for a long enough time. As a resul
positive finite-time Lyapunov exponents can be periodica
achieved.
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